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Eigenstates of paraparticle creation operators
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Abstract. Eigenstates of the parabose and parafermi creation operators are constructed. In the
Dirac contour representation, the parabose eigenstates correspond to the dual vectors of the parabose
coherent states. In order= 2, conserved-charge parabose creation operator eigenstates are also
constructed. The contour forms of the associated resolutions of unity are obtained.

1. Introduction

Inguantum theories, the usual Hilbert space can accomodate eigenstates of bosonic annihilation
operators, which are referred to as ‘coherent states’, whose expansion coefficients in the number
basis of the Hilbert space are ordinary functions. If one enlarges this space by allowing not
only ordinary functions, but also distributions as the expansion coefficients of states in the
number basis, then the enlarged Hilbert space will accomodate eigenstates of bosonic creation
operators. Eigenstates of the ordinary bose creation operator were constructed in [1] using
Heitler’s contour integral form of th&-function [2]. These eigenstates correspond to the dual
vectors of the coherent states in Dirac’s contour representation of boson systems [3, 1, 4]. It
is natural to investigate whether such creation operator eigenstates can also be constructed for
paraparticles [5, 6]. Parabose coherent states were proposed in [7], parafermi coherent states
in [6], and recently, parabose squeezed states in [8]. In local relativistic quantum field theory,
particles obeying parastatistics with > 1 are allowed and they might be produced at the
higher energies of the new/future colliders.

In section 2 of this paper, the eigenstates for the parabose creation operator are constructed.
Heitler’s form of thes-function is used, and the expansion coefficients for these eigenstates
in the parabose number basis are distributions. It is worthwhile recalling that there is another
kind of enlargement of the usual Hilbert space that occurs when the expansion coefficients
are paragrassman numbers. In this case, eigenstates of parafermi creation operators can be
constructed. In section 3, paragrassman numbers are used in the construction of the eigenstates
of the parafermi creation operator. In the number basis, the expansion coefficents for the
f eigenstates and for thg' eigenstates are paragrassman numbers. In this enlarged Hilbert
space, we also discuss various inner products of the eigenstates of parafermi annihilation and
creation operators, and the completeness relations of these eigenstates. Lastly, in section 4,
the conserved-charge parabose creation operator eigenstates are constructed for the two-mode
Tt On leave from: Department of Modern Physics, University of Science and Technology of China, Hefei, 230026,
People’s Republic of China.
¥ E-mail address¢nelson@bingvmb.cc.binghamton.edu

0305-4470/99/020401+09$19.50 © 1999 IOP Publishing Ltd 401



402 S Jing and C A Nelson

parabose system in ordgr= 2. In each section, the respective contour forms of the resolution
of unity are derived.

There are two open questions implicit in the present analysis. (i) While the physical and
practical significance of the ordinary coherent states (the eigenstates of the boson annihilation
operators) is well known, to date such understanding is lacking for eigenstates of the parabose
a' and parafermif creation operators. (ii) What (rigorously) is the enlarged Hilbert space
which contains these creation operator eigenstates? In particular, the parabose eigégnstate
of a' in (9) below is given as a formal expansion without discussion of the convergence of
the series and normalization of the states. In regard to a formulation of a full distribution
theoretic framework for these improper eigenstates, it is noteworthy that the creation operator
eigenstates, e.gz)’ of a', do correspond to the parabose coherent state’s eigémpoda’
in the Dirac contour representation (see equations (11), (13), (40), (52) below).

2. Eigenstates of the parabose’ operator

For a single-mode parabose system, the number basis is

(a"y"

) = —=

V]!

whereNp is the number operataVz = %{aT, a) — g with p the order of the parastatistics.
The eigenvalue of the deformed parabose number opersidri$

-1
o= a-en ®)
with [n]! = [n][n — 1]---[1], [O]! = 1. The parabose number states statisfy

alny =[nlln—1)  a'ln) = Vn+1n +1). (3)

In this basis, the unnormalized coherent states [7] are

m=E@H0  E@=) iy (@)
n=0 )

|0), Ng|n) = n|n) (1)

[n]l=n+

(o] Zn

l2) =)  ——==I

; VIn]!
with a|z) = z|z).
We denote the eigenstate of the creation opetdtdny a ‘primed’ ket|z)’,

a'lz) = 2|z (5)
and expand ifz)’ = >~ c,(z*)n) in the number basis. By (3), the resulting recursion
relations are

coz" =0 caaz" =[] co en 2t =/[n] cur (6)
orc, = (v[n]'/(z*)")co. By the Cauchy integral formula for an analytic functigiz*), or
alternatively by use of Heitlers-function [2] in the contour integralt, it follows [1] that

co=—| =8 7
7 |+

¢ = An]! _ (=) /n]! 5 (2%, ®)
(Z*)n+1 cx n!

T Note that
dz* o %
70 = fc o FEE).
Thenth derivative is

™) = nt dz* f(z%)

o E (Z*)n+1

=(-)" / " dr ) 8 ().
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The notation ¢+ means that the subsequent integration aVenust be over the anticlockwise
contourC* enclosing the origin in the complex plane.
So, the eigenstate af' is

X _\n ] o T\n
=Y S s = 3 )| =3 S0 ©
n=0 n! ) C* =0 (Z ) C*
and, formally (in the number basis)
1
l2) = ——I0) (10)
¥ —a c

Note that the action of integer powers(af )” removes the contribution of the number states
n < m in this expansion; for example

;1
—at

|0)

a'lz) =a =212

1
=z *—’r|0> —10)
C* T —a C*
since the0)| ., term gives no contribution because of the subsequent contour integration.
In the Dirac contour representation, the dual veétgrof the parabose coherent staté,
given above in (4), [10] is

o) *\n X qal *\1
(l = > 0 22 yo YR ) (2] > lal). (12)

= n — =
= In]! o SRRV 7] [

with («|la’ = (a|a*. Thus, the eigenstate)’ of a' in the number basis corresponds to the
parabose coherent state’s eigenfarpof a' in the Dirac contour representation.

The inner product of the unnormalized parabose coherent|astatnd the eigenstate)’
is given by

;L o0 (w*)n /
W' = > ol G

o0 *)n
Z 7* m+l
—5 @)

=8(z" —w") (Iz] > [w]) (12)
C*

and so they satisfy the ‘contour form’ of the resolution of unity (see [3])

dz* Ve VInl' (Z*)m
o 2mi 2 ?g* 2mi (Z*)"+1 Z' (13)

n,m=0

n,m=0 C*
1

Z*_w*

Remark. This resolution of unity can be used to derive a contour integral expressions for the
parabose Hermite polynomials [11]: From (13), the parabose coordinate eigénstate be

written as
\/[n_
x) = yﬁ B (14)

0 27i

where (x|z) is the Wavefunctlon of the parabose coherent state in the parabose coordinate
representation. We consider

1 T
—(x|(a +a')|z). 15
. ﬁ< I( )z) (15)
From (3), cf equation (14) for the parabose deformed derivddiy®z in [10],

toy 0 p=1\ ., (pP=1\ _
aIZ)—aZIZ>+< > )IZ> < > )I z) (16)

(xlz) = —(x|x|z) =
x
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so (15) gives

d -1 -1
ale) = (—a+av2 - L= ixlay + (= )l - 2. (17)
0z 2z 2z
This has the solution
2 2
umpﬂ%w%—g—i)ﬂJb@ (18)
with Ny a normalization constant. Substituting this into (14) gives
2 A/ [n dZ* ()2
= Noe "/ V2RV 2xzh). 19
e ;|%I*mme (V2xz") (19)
But from [11], in the parabose coordinate representation
00 00 (p)
2 H," (x)
= = Noe /2 20
;wm 0 Z|2% (20)
(n/2) k n—2k
(=) (2x)
H® — | > =7 21
W) =lnl ; Ki[n — 24]! 1)
where k]’ denotes the largest integer less than or equél ®o since then) are complete,
HP (x) = [ f e O 2E(V2x). (22)
2ni (z)”+l

3. Eigenstates of the parafermift operator

In the finite-dimensional Hilbert space of a single-mode parafermi system, the number states
can be written as

t\n
In) = A |0) Nyln) = nin) (23)
{n}!
whereN; = %[f*, f1+ 4 is the parafermi number operator. Here
{n}=n(p+1l-n) {n}t ={nHn-1}---{1} {oy=1 (24)

with n an integer, 0< n < p. In this basis,fT|n) = /{n + 1}n), fln) = J/n}ln — 1).
Sincef|p) = 0, there is the useful fact that

_ o, ’s
In) = {p}!f |p)- (25)

To describe the parafermi eigenstatesfofand of £T) in this number basis, we use [6]
paragrassman numbeysobeyings?** = 0. The unnormalized eigenstate of the parafermi
annihilation operatoy

26
Z'{W (26)

satisfies the eigenequatigh¢) = |£)&. In this formulation &) is expandable in the number
basis, cf [6]. Note that stands to the right ok ). The overlap of two eigenstatis and|¢)
is

P K\ =1
=) @7)
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whereg* is the conjugate of. By the paragrassmann integral formula (see appendix A)
[ & duiee) € = b o (28)
and (26), there is the resolution of unity
/ [€)d (&, %) (&| =

du(§, &%) = d’g* d’g exp(—;[€", €]).

To constuct the eigenstates of the parafermi creation opeydtowe recall (25) and
consider

(29)

Dn( ey [ (30)

These are the desired eigenstates, since

r—1 )4
leE)/ — Z|n+1>(_é*)p7’l {n+1}| Z|n ( E )p n+l {n}|

ra {p}! [l
= —|£)' &". (31)

The overlap of these eigenstates is

ey =3 W ey Z Y Py (32)

n=| O{ }l n=0 { }

As for the f eigenstates in (29), the eigenstags obey a resolution of unity

/I&)’du(é*,é) El=1 (33)
where

du(€*, &) = d”& dP&* exp(—3[¢, £°1). (34)

This follows from (26) and (30) by

fIE)'dM(f;'*,S) (&l

)4 I :
=2 I / (67" dpu(&", §)(—&)r " (m| LR
=0 (!
= Z{{n}}l{ —n}lln)(n| =1 (35)

n=0

where we have used the fact that! = n! p!/(p — n)L.
Furthermore, with the aid of the differentiation formula (see appendix B)

?
n—1 n
gg ={n&""=§ 9% O<n<p) (36)

we have

k)
Mgy =18 — f1g) =—1g)

T T (37)
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which give the matrix elements ¢f', f:
€l frgy = S* (518) = — (&18) &~

: (38)
&l f18) = ag* (&18§) = —(£l€) s
Alternatively, these equations follow from (26) and (30), since
(Elg) = Z( )" (ET)(EHIT. (39)

J_N

Lastly, as in the parabose case (13), there is a contour-like form resolution of unity for the
fTand f eigenstates:

1
flé)’d”é* ¢l= Z /( ENPTdPET (87)"(m |W

n,m=0

p
=D Il =1 (40)
n=0

where we have used
[es@r=pn  [@eer=0 0<n<p (41)

ands* dPg* = —dPE* £*. Note thatin (40), as in the parabose case (13), the integration is only
over a single variable in the contour form of the resolution of unity, whereas in (29) and (35)
it is over two variables as for the usual parabose coherent states.

4. Conserved-charge parabose creation operator eigenstates for ordgr= 2

The parabose creation and annihilation operators for the two-mode system satisfy the trilinear
commutation relations

[ak’ {alT’ Clm}] = zaklam [ak’ {a;’ artt}] = 28kla;; + 28kma]T
[ax, {ar, an}] =0 k,I,m=1,2)

wherea; = a, ap = b. Sinceab # ba for p > 2, there is a degeneracy in the states with
n parabosons andm parabosons. For such states, we find [9] that the degree of degeneracy
is ‘min(n, m) + 1. The complete set of state vectorst is

1

whereN,; . 1S the normalization constant, aSd= %(1— (—)™), andi is the degeneracy index

1 < i < min(n, m) + 1. For parastatistics of order= 2, the{|n, m; i)} are an orthonormal
set basis vectors with normalization constant

(N,im)z_2"*'"[”;’}![“;_i}![m;i}![m+;_’1!. (44)

In this basisa, b, a, b also act as raising and lowering operators (the explict fomulae are
given in [9, equations (15)—(18)]).

(42)

|I’l, m: l> — (aT)n—i+S(bT)m—Z[(i—S)/Z](aTbT)Z[(i—S)/Z](aT)i—S—Z[(i—S)/Z]|0> (43)

T Note that here in section 4 (but not in section.g)denotes the integer part offor x > 0.
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If we considera andb to be two types of parabose quanta possessing Abelian charges
‘+1’ and ‘—1’, then the charge operator is

O0=N,—N, (45)
with N, 2{a a}—1 N, = 2{lfr b} — 1. This charge operata® commutes with the
operatorsnTlfr andb’fa’r so their common eigenstate should satisfy the eigenequations

0lg,z,w) =qlg,z, w)

46
a'pt (46)

lg, z, w) = w*|q, z, w) blatlq, z, w) = z¥|q, z, w)'.

Expandinggq, z, w)’ in terms of the complete set of orthonormal basis vediars; i) for the
two-mode parabose system, fpe> 0 we have from the) eigenequation (46):

oo m+l

g, 2, wY ZZcmm lg +m, m; i). (47)

m=0 i=

From the remaining two eigenequations, we obtain the coefficients

o

¢ — S(Y)(w*)a(r)(z*)

VM)
R ol e L .

= 48
AE] e |,
where the integers
_[m—( )q“”” - (= )q]
r=
2 4
_[m+ i 14 ()
[y o),

The anticlockwise contourS* and B* enclose respectively the origins in the compt&and
w* planes. Since for a specifiesector the overall[ $]'[ ‘17”]! )~Y2is constant, we omit it in
the following analysis.

We list results only for thg > 0 sector: in it the unnormalized dual vectors are

= g2 2 [ )

|q % w Z Z (w*)l+s(z>k)l+r |q tm,m; l) (49)
m=0 i= c*.B*

whereas the unnormalized parabose conserved-charge coherent states themselves [9, 12] are
oo m+l v ut

g, v,u)y=>">" g +m.m:i). (50)

=151 o [ [ g [

The inner product ofg, z, w)’ and|q, v, u) is

oom+l 1
ol =3 (>()(H>
m=0 i=1 Tw

C*,B*

o —v* o W —u*|p.

=38(" —v)s(w" —u") (2*1 > 7], [w™| > |u™]). (51)
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These satisfy the contour form of the resolution of unity

de’ du” = imi + + =1, (52)
*ZnIZanZw (g,z,w qgtm,m;i){qg+m,m;i| =

m=0 i=
wherel, is the unity operator in thg > 0 sector.

In summary, working in the number basis, in this paper we construct the creation operator
eigenvectors for single-mode parabosons and parafermions, and for the two-mode conserved-
charge parabosons. The contour forms of the associated resolutions of unity are obtained.
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Appendix A. Proof of the paragrassman integration formula

We write§ = > | &, where the Green componeftssatisfy the relations

{6,861 =0 [£.51=0 @ #)). (A.1)
Also

1
SIE €] = Zsa (Ble™. &% =21 Y greree

i<j

GIE &N =nt 3 & &k &,
GLE™ &P = pl & 361§, (A.2)
SO

exp(—1[&%, £]) —1+Z§,s + Y EEEE

i<j

C+ Z E o BBl E A BB & (A.3)
For paragrassman integration, we adopt
[esae,=1 [@rsa =0 0<n<p (A4)

where d& = d&, - - - d§,. These give (41).

By (A.4), the integral/ & dyu (¢, £*) (§*)™ with du(§, %) = dPg dPg* exp(—3[&7, €])
is non-zero only when = m. So in this integration, we identify

E"(E)" ~ (1) Z E, o EE - E (A.5)
EP(EN)P ~ (p)Er - E 8T &0 (A.6)

In the sum in (A.5) there are atotal ()j) termst, and each such term contributes only once in
the paragrassman integration; thus

I p!
/ £ g dE" exp(—31E", £]) (€)' = (n!)2<5 ) = o = (A7)

t Here(?) denotes the ordinary binomial coefficient.
n
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Appendix B. Proof of the paragrassman differentiation formula

The left-differentiation with respect tbis defined by

ad LA
i — B.1
8%‘ i=1 851 ( )
where
el L)oo
e o A (= 0 e 0 A | T 0 (l ;é .])
351' 0&; 8351' 0§, (B.2)
{a—siagi}zl [8—&»%]:0 @ #J)-
In terms of Green components’ can be expressed as
g =nl Y & f (B.3)

i1<--<ip

where there ar€’) terms in the sum. For eaghin

0 L9
— " =nl —< & g) B.4
% ; % Z . (B.4)
there are(,’;j) terms in the inner summation which involgeand which survive aftes/9;.

So there are a total of! p (fl’j) terms on the ‘right-hand side’ of (B.4) and they are of the
formég;, --- &, , withi; < --- < i,_1. These are precisely the terms appearing in the Green-
component expansion gf'~1. By considering the symmetry of the Green components, we
obtain the proportionality factor

Ip(Pt
(nn_pl(—)”,(ll) =n(pt+1l—n)={n} (B.5)
o n—1
% £" = {n}g"t 0<n<p). (B.6)

Right-differentiation can be dealt with in a similar manner.
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