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Eigenstates of paraparticle creation operators
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Department of Physics, State University of New York at Binghamton, Binghamton,
NY 13902-6016, USA

Received 8 July 1998, in final form 23 October 1998

Abstract. Eigenstates of the parabose and parafermi creation operators are constructed. In the
Dirac contour representation, the parabose eigenstates correspond to the dual vectors of the parabose
coherent states. In orderp = 2, conserved-charge parabose creation operator eigenstates are also
constructed. The contour forms of the associated resolutions of unity are obtained.

1. Introduction

In quantum theories, the usual Hilbert space can accomodate eigenstates of bosonic annihilation
operators, which are referred to as ‘coherent states’, whose expansion coefficients in the number
basis of the Hilbert space are ordinary functions. If one enlarges this space by allowing not
only ordinary functions, but also distributions as the expansion coefficients of states in the
number basis, then the enlarged Hilbert space will accomodate eigenstates of bosonic creation
operators. Eigenstates of the ordinary bose creation operator were constructed in [1] using
Heitler’s contour integral form of theδ-function [2]. These eigenstates correspond to the dual
vectors of the coherent states in Dirac’s contour representation of boson systems [3, 1, 4]. It
is natural to investigate whether such creation operator eigenstates can also be constructed for
paraparticles [5, 6]. Parabose coherent states were proposed in [7], parafermi coherent states
in [6], and recently, parabose squeezed states in [8]. In local relativistic quantum field theory,
particles obeying parastatistics withp > 1 are allowed and they might be produced at the
higher energies of the new/future colliders.

In section 2 of this paper, the eigenstates for the parabose creation operator are constructed.
Heitler’s form of theδ-function is used, and the expansion coefficients for these eigenstates
in the parabose number basis are distributions. It is worthwhile recalling that there is another
kind of enlargement of the usual Hilbert space that occurs when the expansion coefficients
are paragrassman numbers. In this case, eigenstates of parafermi creation operators can be
constructed. In section 3, paragrassman numbers are used in the construction of the eigenstates
of the parafermi creation operator. In the number basis, the expansion coefficents for the
f eigenstates and for thef † eigenstates are paragrassman numbers. In this enlarged Hilbert
space, we also discuss various inner products of the eigenstates of parafermi annihilation and
creation operators, and the completeness relations of these eigenstates. Lastly, in section 4,
the conserved-charge parabose creation operator eigenstates are constructed for the two-mode
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parabose system in orderp = 2. In each section, the respective contour forms of the resolution
of unity are derived.

There are two open questions implicit in the present analysis. (i) While the physical and
practical significance of the ordinary coherent states (the eigenstates of the boson annihilation
operators) is well known, to date such understanding is lacking for eigenstates of the parabose
a† and parafermif † creation operators. (ii) What (rigorously) is the enlarged Hilbert space
which contains these creation operator eigenstates? In particular, the parabose eigenstate|z〉′
of a† in (9) below is given as a formal expansion without discussion of the convergence of
the series and normalization of the states. In regard to a formulation of a full distribution
theoretic framework for these improper eigenstates, it is noteworthy that the creation operator
eigenstates, e.g.|z〉′ of a†, do correspond to the parabose coherent state’s eigenbra〈α| of a†

in the Dirac contour representation (see equations (11), (13), (40), (52) below).

2. Eigenstates of the parabosea† operator

For a single-mode parabose system, the number basis is

|n〉 = (a†)n√
[n]!
|0〉, NB |n〉 = n|n〉 (1)

whereNB is the number operatorNB = 1
2{a†, a} − p

2 with p the order of the parastatistics.
The eigenvalue of the deformed parabose number operator [NB ] is

[n] = n +
p − 1

2
(1− (−)n) (2)

with [n]! = [n][n− 1] · · · [1], [0]! ≡ 1. The parabose number states statisfy

a|n〉 =
√

[n]|n− 1〉 a†|n〉 =
√

[n + 1]|n + 1〉. (3)

In this basis, the unnormalized coherent states [7] are

|z〉 =
∞∑
n=0

zn√
[n]!
|n〉 = E(za†)|0〉 E(x) ≡

∞∑
n=0

xn

[n]!
(4)

with a|z〉 = z|z〉.
We denote the eigenstate of the creation operatora† by a ‘primed’ ket|z〉′,

a†|z〉′ = z∗|z〉′ (5)

and expand it|z〉′ = ∑∞
n=0 cn(z

∗)|n〉 in the number basis. By (3), the resulting recursion
relations are

c0 z
∗ = 0 c1 z

∗ =
√

[1] c0 cn z
∗ =

√
[n] cn−1 (6)

or cn =
(√

[n]!/(z∗)n
)
c0. By the Cauchy integral formula for an analytic functionf (z∗), or

alternatively by use of Heitler’sδ-function [2] in the contour integral†, it follows [1] that

c0 = 1

z∗

∣∣∣∣
C∗
= δ(z∗) (7)

cn =
√

[n]!

(z∗)n+1

∣∣∣∣
C∗
= (−)n√[n]!

n!
δ(n)(z∗). (8)

† Note that

f (0) =
∮
C∗

dz∗

2π i
f (z∗)δ(z∗).

Thenth derivative is

f (n)(0) = n!
∮
C∗

dz∗

2π i

f (z∗)
(z∗)n+1

= (−)n
∫ ∞
−∞

dx f (x) δ(n)(x).
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The notation|C∗ means that the subsequent integration overz∗ must be over the anticlockwise
contourC∗ enclosing the origin in the complexz∗ plane.

So, the eigenstate ofa† is

|z〉′ =
∞∑
n=0

(−)n√[n]!

n!
δ(n)(z∗)|n〉 =

∞∑
n=0

√
[n]!

(z∗)n+1
|n〉
∣∣∣∣
C∗
=
∞∑
n=0

(a†)n

(z∗)n+1
|0〉
∣∣∣∣
C∗

(9)

and, formally (in the number basis)

|z〉′ = 1

z∗ − a†
|0〉
∣∣∣∣
C∗
. (10)

Note that the action of integer powers of(a†)m removes the contribution of the number states
n < m in this expansion; for example

a†|z〉′ = a† 1

z∗ − a†
|0〉
∣∣∣∣
C∗
= z∗ 1

z∗ − a†
|0〉
∣∣∣∣
C∗
− |0〉∣∣

C∗ = z∗ |z〉′

since the|0〉∣∣
C∗ term gives no contribution because of the subsequent contour integration.

In the Dirac contour representation, the dual vector〈α| of the parabose coherent state|α〉,
given above in (4), [10] is

〈α| =
∞∑
n=0

〈n| (α
∗)n√
[n]!

→
∞∑
n=0

√
[n]!

zn+1

(α∗)n√
[n]!
= 1

z− α∗ (|z| > |α|). (11)

with 〈α|a† = 〈α|α∗. Thus, the eigenstate|z〉′ of a† in the number basis corresponds to the
parabose coherent state’s eigenbra〈α| of a† in the Dirac contour representation.

The inner product of the unnormalized parabose coherent state|w〉 and the eigenstate|z〉′
is given by

〈w|z〉′ =
∞∑

n,m=0

〈n| (w
∗)n√

[n]!

√
[m]!

(z∗)m+1
|m〉

∣∣∣∣
C∗
=
∞∑
n=0

(w∗)n

(z∗)m+1

∣∣∣∣
C∗

= 1

z∗ − w∗
∣∣∣∣
C∗
= δ(z∗ − w∗) (|z| > |w|) (12)

and so they satisfy the ‘contour form’ of the resolution of unity (see [3])∮
C∗

dz∗

2π i
|z〉′〈z| =

∞∑
n,m=0

∮
C∗

dz∗

2π i

√
[n]!

(z∗)n+1
|n〉〈m| (z

∗)m√
[m]!
=
∞∑
n=0

|n〉〈n| = I. (13)

Remark. This resolution of unity can be used to derive a contour integral expressions for the
parabose Hermite polynomials [11]: From (13), the parabose coordinate eigenstate|x〉 can be
written as

|x〉 =
∞∑
n=0

|n〉
√

[n]!

2π i

∮
C∗

dz∗

(z∗)n+1
〈z|x〉 (14)

where〈x|z〉 is the wavefunction of the parabose coherent state in the parabose coordinate
representation. We consider

〈x|z〉 = 1

x
〈x|x̂|z〉 = 1

x
√

2
〈x|(a + a†)|z〉. (15)

From (3), cf equation (14) for the parabose deformed derivativeD/Dz in [10],

a†|z〉 = ∂

∂z
|z〉 +

(
p − 1

2z

)
|z〉 −

(
p − 1

2z

)
| − z〉 (16)
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so (15) gives

∂

∂z
〈x|z〉 =

(
−z + x

√
2− p − 1

2z

)
〈x|z〉 +

(
p − 1

2z

)
〈x| − z〉. (17)

This has the solution

〈x|z〉 = N0 exp

(
−z

2

2
− x

2

2

)
E(
√

2xz) (18)

with N0 a normalization constant. Substituting this into (14) gives

|x〉 = N0e−x
2/2

∞∑
n=0

|n〉
√

[n]!

2π i

∮
C∗

dz∗

(z∗)n+1
e−(z

∗)2/2E(
√

2xz∗). (19)

But from [11], in the parabose coordinate representation

|x〉 =
∞∑
n=0

|n〉〈n|x〉 = N0e−x
2/2

∞∑
n=0

|n〉H
(p)
n (x)√
2n[n]!

(20)

H(p)
n (x) = [n]!

[n/2]′∑
k=0

(−)k(2x)n−2k

k![n− 2k]!
(21)

where [k]′ denotes the largest integer less than or equal tok. So since the|n〉 are complete,

H(p)
n (x) = [n]!

2π i

∮
C

dz

(z)n+1
e−(z)

2/2E(
√

2xz). (22)

3. Eigenstates of the parafermif † operator

In the finite-dimensional Hilbert space of a single-mode parafermi system, the number states
can be written as

|n〉 = (f †)n√{n}! |0〉 Nf |n〉 = n|n〉 (23)

whereNf = 1
2[f †, f ] + p

2 is the parafermi number operator. Here

{n} = n(p + 1− n) {n}! = {n}{n− 1} · · · {1} {0}! ≡ 1 (24)

with n an integer, 06 n 6 p. In this basis,f †|n〉 = √{n + 1}|n〉, f |n〉 = √{n}|n − 1〉.
Sincef †|p〉 = 0, there is the useful fact that

|n〉 =
√
{n}!
{p}! f

p−n |p〉. (25)

To describe the parafermi eigenstates off (and off †) in this number basis, we use [6]
paragrassman numbersξ obeyingξp+1 = 0. The unnormalized eigenstate of the parafermi
annihilation operatorf

|ξ〉 =
p∑
n=0

|n〉 ξn√{n}! (26)

satisfies the eigenequationf |ξ〉 = |ξ〉ξ . In this formulation,|ξ〉 is expandable in the number
basis, cf [6]. Note thatξ stands to the right of|ξ〉. The overlap of two eigenstates|ξ〉 and|ζ 〉
is

〈ξ |ζ 〉 =
p∑
n=0

(ξ ∗)nζ n

{n}! (27)
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whereξ ∗ is the conjugate ofξ . By the paragrassmann integral formula (see appendix A)∫
ξn dµ(ξ, ξ ∗) (ξ ∗)m = δn,m {n}! (28)

and (26), there is the resolution of unity∫
|ξ〉dµ(ξ, ξ ∗)〈ξ | = I

dµ(ξ, ξ∗) = dpξ ∗ dpξ exp
(− 1

2[ξ ∗, ξ ]
)
.

(29)

To constuct the eigenstates of the parafermi creation operatorf †, we recall (25) and
consider

|ξ〉′ =
p∑
n=0

|n〉(−ξ ∗)p−n
√
{n}!
{p}! . (30)

These are the desired eigenstates, since

f †|ξ〉′ =
p−1∑
n=0

|n + 1〉(−ξ ∗)p−n
√
{n + 1}!
{p}! =

p∑
n=1

|n〉(−ξ ∗)p−n+1

√
{n}!
{p}!

= −|ξ〉′ ξ ∗. (31)

The overlap of these eigenstates is

′〈ξ |ζ 〉′ =
p∑
n=0

{n}!
{p}! ξ

p−n(ζ ∗)p−n =
p∑
n=0

{p − n}!
{p}! ξn(ζ ∗)n. (32)

As for thef eigenstates in (29), the eigenstates|ξ〉′ obey a resolution of unity∫
|ξ〉′dµ(ξ ∗, ξ) ′〈ξ | = I (33)

where

dµ(ξ∗, ξ) = dpξ dpξ ∗ exp
(− 1

2[ξ, ξ ∗]
)
. (34)

This follows from (26) and (30) by∫
|ξ〉′dµ(ξ ∗, ξ) ′〈ξ |

=
p∑

n,m=0

|n〉
∫
(−ξ ∗)p−n dµ(ξ ∗, ξ)(−ξ)p−m〈m|

√{n}!{m}!
{p}!

=
p∑
n=0

{n}!
{p}! {p − n}!|n〉〈n| = I (35)

where we have used the fact that{n}! = n! p!/(p − n)!.
Furthermore, with the aid of the differentiation formula (see appendix B)

∂

∂ξ
ξn = {n} ξn−1 = ξn

←−
∂

∂ξ
(06 n 6 p) (36)

we have

f † |ξ〉 = |ξ〉
←−
∂

∂ξ
f |ξ〉′ = −|ξ〉′

←−
∂

∂ξ ∗
(37)
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which give the matrix elements off †, f :

〈ξ | f † |ξ〉′ = ξ ∗ 〈ξ |ξ〉′ = − 〈ξ |ξ〉′ ξ ∗

〈ξ | f |ξ〉′ = ∂

∂ξ ∗
〈ξ |ξ〉′ = −〈ξ |ξ〉′

←−
∂

∂ξ ∗
.

(38)

Alternatively, these equations follow from (26) and (30), since

〈ξ |ξ〉′ = (−)p√{p}!
p∑
n=0

(−)n (ξ ∗)n(ξ ∗)p−n. (39)

Lastly, as in the parabose case (13), there is a contour-like form resolution of unity for the
f † andf eigenstates:∫
|ξ〉′ dpξ ∗ 〈ξ | =

p∑
n,m=0

√
{n}!
{p}! |n〉

∫
(−ξ ∗)p−n dpξ ∗ (ξ ∗)m〈m| 1√{m}!

=
p∑
n=0

|n〉〈n| = I (40)

where we have used∫
dpξ ∗ (ξ ∗)p = p!

∫
dpξ ∗ (ξ ∗)n = 0 (06 n 6 p) (41)

andξ∗ dpξ ∗ = −dpξ ∗ ξ ∗. Note that in (40), as in the parabose case (13), the integration is only
over a single variable in the contour form of the resolution of unity, whereas in (29) and (35)
it is over two variables as for the usual parabose coherent states.

4. Conserved-charge parabose creation operator eigenstates for orderp = 2

The parabose creation and annihilation operators for the two-mode system satisfy the trilinear
commutation relations

[ak, {a†
l , am}] = 2δklam [ak, {a†

l , a
†
m}] = 2δkla

†
m + 2δkma

†
l

[ak, {al, am}] = 0 (k, l, m = 1, 2)
(42)

wherea1 = a, a2 = b. Sinceab 6= ba for p > 2, there is a degeneracy in the states with
n parabosonsa andm parabosonsb. For such states, we find [9] that the degree of degeneracy
is ‘min(n,m) + 1’. The complete set of state vectors† is

|n,m; i〉 = 1√
Ni
n,m

(a†)n−i+S(b†)m−2[(i−S)/2](a†b†)2[(i−S)/2](a†)i−S−2[(i−S)/2]|0〉 (43)

whereNi
n,m is the normalization constant, andS = 1

2(1− (−)m), andi is the degeneracy index
1 6 i 6 min(n,m) + 1. For parastatistics of orderp = 2, the{|n,m; i〉} are an orthonormal
set basis vectors with normalization constant

(Ni
n,m)

2 = 2n+m

[
n + i

2

]
!

[
n + 1− i

2

]
!

[
m + i

2

]
!

[
m + 1− i

2

]
! . (44)

In this basis,a†, b†, a, b also act as raising and lowering operators (the explict fomulae are
given in [9, equations (15)–(18)]).

† Note that here in section 4 (but not in section 2) [x] denotes the integer part ofx for x > 0.
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If we considera andb to be two types of parabose quanta possessing Abelian charges
‘+1’ and ‘−1’, then the charge operator is

Q ≡ Na −Nb (45)

with Na = 1
2{a†, a} − 1, Nb = 1

2{b†, b} − 1. This charge operatorQ commutes with the
operatorsa†b† andb†a†, so their common eigenstate should satisfy the eigenequations

Q |q, z,w〉′ = q|q, z,w〉′
a†b†|q, z,w〉′ = w∗|q, z,w〉′ b†a†|q, z,w〉′ = z∗|q, z,w〉′. (46)

Expanding|q, z,w〉′ in terms of the complete set of orthonormal basis vectors|n,m; i〉 for the
two-mode parabose system, forq > 0 we have from theQ eigenequation (46):

|q, z,w〉′ =
∞∑
m=0

m+1∑
i=1

ciq+m,m |q +m,m; i〉. (47)

From the remaining two eigenequations, we obtain the coefficients

ciq+m,m =
(−)m2m

√[
q+m+i

2

]
!
[
q+m+1−i

2

]
!√[

q

2

]
!
[
q+1

2

]
!
[
m+i

2

]
!
[
m+1−i

2

]
!
δ(s)(w∗)δ(r)(z∗)

= 1√[
q

2

]
!
[
q+1

2

]
!

2m
√[

m+i
2

]
!
[
m+1−i

2

]
!
[
q+m+i

2

]
!
[
q+m+1−i

2

]
!

(w∗)1+s(z∗)1+r

∣∣∣∣∣∣
C∗,B∗

(48)

where the integers

r ≡
[
m− (−)q+m+i i

2
+

1− (−)q
4

]
s ≡

[
m + (−)q+m+i i

2
+

1 + (−)q
4

]
.

The anticlockwise contoursC∗ andB∗ enclose respectively the origins in the complexz∗ and
w∗ planes. Since for a specificq-sector the overall([ q2 ]![ q+1

2 ]!)−1/2 is constant, we omit it in
the following analysis.

We list results only for theq > 0 sector: in it the unnormalized dual vectors are

|q, z,w〉′ =
∞∑
m=0

m+1∑
i=1

2m
√[

m+i
2

]
!
[
m+1−i

2

]
!
[
q+m+i

2

]
!
[
q+m+1−i

2

]
!

(w∗)1+s(z∗)1+r
|q +m,m; i〉

∣∣∣∣∣∣
C∗,B∗

(49)

whereas the unnormalized parabose conserved-charge coherent states themselves [9, 12] are

|q, v, u〉 =
∞∑
m=0

m+1∑
i=1

vrus

2m
√[

m+i
2

]
!
[
m+1−i

2

]
!
[
q+m+i

2

]
!
[
q+m+1−i

2

]
!
|q +m,m; i〉. (50)

The inner product of|q, z,w〉′ and|q, v, u〉 is

〈q, v, u|q, z,w〉′ =
∞∑
m=0

m+1∑
i=1

(
v∗

z∗

)r(
u∗

w∗

)s( 1

z∗w∗

)∣∣∣∣
C∗,B∗

= 1

z∗ − v∗
∣∣∣∣
C∗

1

w∗ − u∗
∣∣∣∣
B∗

= δ(z∗ − v∗) δ(w∗ − u∗) (|z∗| > |v∗|, |w∗| > |u∗|). (51)
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These satisfy the contour form of the resolution of unity∮
C∗

∮
B∗

dz∗

2π i

dw∗

2π i
|q, z,w〉′ 〈q, z,w| =

∞∑
m=0

m+1∑
i=1

|q +m,m; i〉 〈q +m,m; i| = Iq (52)

whereIq is the unity operator in theq > 0 sector.
In summary, working in the number basis, in this paper we construct the creation operator

eigenvectors for single-mode parabosons and parafermions, and for the two-mode conserved-
charge parabosons. The contour forms of the associated resolutions of unity are obtained.
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Appendix A. Proof of the paragrassman integration formula

We writeξ =∑p

i=1 ξi , where the Green componentsξi satisfy the relations

{ξi, ξi} = 0 [ξi, ξj ] = 0 (i 6= j). (A.1)

Also
1

2
[ξ ∗, ξ ] =

p∑
i=1

ξ ∗i ξi ( 1
2[ξ ∗, ξ ])2 = 2!

∑
i<j

ξ ∗i ξ
∗
j ξiξj

· · · ( 1
2[ξ ∗, ξ ])n = n!

∑
i1<···<in

ξ ∗i1 · · · ξ ∗inξi1 · · · ξin

· · · ( 1
2[ξ ∗, ξ ])p = p! ξ ∗1 · · · ξ ∗pξ1 · · · ξp (A.2)

so

exp
(− 1

2[ξ ∗, ξ ]
) = 1 +

∑
i

ξiξ
∗
i +

∑
i<j

ξiξj ξ
∗
i ξ
∗
j

+ · · · +
∑

i1<···<in
ξi1 · · · ξinξ ∗i1 · · · ξ ∗in + · · · + ξ1 · · · ξpξ ∗1 · · · ξ ∗p. (A.3)

For paragrassman integration, we adopt∫
dpξ ξ1 · · · ξp = 1

∫
dpξ ξi1 · · · ξin = 0 (06 n < p) (A.4)

where dpξ ≡ dξ1 · · ·dξp. These give (41).
By (A.4), the integral

∫
ξn dµ(ξ, ξ ∗) (ξ ∗)m with dµ(ξ, ξ ∗) = dpξ dpξ ∗ exp

(− 1
2[ξ ∗, ξ ]

)
is non-zero only whenn = m. So in this integration, we identify

ξn(ξ ∗)n ∼ (n!)2
∑

i1<···<in
ξi1 · · · ξinξ ∗i1 · · · ξ ∗in (A.5)

ξp(ξ ∗)p ∼ (p!)2ξ1 · · · ξpξ ∗1 · · · ξ ∗p. (A.6)

In the sum in (A.5) there are a total of
(
p

n

)
terms†, and each such term contributes only once in

the paragrassman integration; thus∫
ξn dpξ dpξ ∗ exp

(− 1
2[ξ ∗, ξ ]

)
(ξ∗)n = (n!)2

(
p

n

)
= n!p!

(p − n)! = {n}! . (A.7)

† Here
(
p
n

)
denotes the ordinary binomial coefficient.
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Appendix B. Proof of the paragrassman differentiation formula

The left-differentiation with respect toξ is defined by

∂

∂ξ
=

p∑
i=1

∂

∂ξi
(B.1)

where {
∂

∂ξi
,
∂

∂ξi

}
= 0

[
∂

∂ξi
,
∂

∂ξj

]
= 0 (i 6= j){

∂

∂ξi
, ξi

}
= 1

[
∂

∂ξi
, ξj

]
= 0 (i 6= j).

(B.2)

In terms of Green components,ξn can be expressed as

ξn = n!
∑

i1<···<in
ξi1 · · · ξin (B.3)

where there are
(
p

n

)
terms in the sum. For eachj , in

∂

∂ξ
ξn = n!

p∑
j=1

∂

∂ξj

( ∑
i1<···<in

ξi1 · · · ξin
)

(B.4)

there are
(
p−1
n−1

)
terms in the inner summation which involveξj and which survive after∂/∂ξj .

So there are a total ofn! p
(
p−1
n−1

)
terms on the ‘right-hand side’ of (B.4) and they are of the

form ξi1 · · · ξin−1 with i1 < · · · < in−1. These are precisely the terms appearing in the Green-
component expansion ofξn−1. By considering the symmetry of the Green components, we
obtain the proportionality factor

n!p
(
p−1
n−1

)
(n− 1)!

(
p

n−1

) = n(p + 1− n) = {n} (B.5)

so
∂

∂ξ
ξn = {n} ξn−1 (06 n 6 p). (B.6)

Right-differentiation can be dealt with in a similar manner.
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